Quantifying the relation between bond number and myoblast proliferation.
نویسندگان
چکیده
Many functions of the extracellular matrix can be mimicked by small peptide fragments (e.g., arginine-glycine-aspartic acid (RGD) sequence) of the entire molecule, but the presentation of the peptides is critical to their effects on cells. It is likely that some effects of peptide presentation from biomaterials simply relate to the number of bonds formed between cell receptors and the adhesion ligands, but a lack of tools to quantify bond number limits direct investigation of this assumption. The impact of different ligand presentations (density, affinity, and nanoscale distribution) on the proliferation of C2C12 and human primary myoblasts was first examined in this study. Increasing the ligand density or binding affinity led to a similar enhancement in proliferation of C2C12 cells and human primary myoblasts. The nanoscale distribution of clustered RGD ligands also influenced C2C12 cells and human primary myoblast proliferation, but in an opposing manner. A theological technique and a FRET technique were then utilized to quantify the number of receptor-ligand interactions as a function of peptide presentation. Higher numbers of bonds were formed when the RGD density and affinity were increased, as measured with both techniques, and bond number correlated with cell growth rates. However, the influence of the nanoscale peptide distribution did not appear to be solely a function of bond number. Altogether, these findings provide significant insight to the role of peptide presentation in the regulation of cell proliferation, and the approaches developed in this work may have significant utility in probing how adhesion regulates a variety of other cellular functions and aid in developing design criterion for cell-interactive materials.
منابع مشابه
Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype.
One of the fundamental interactions in cell biology is the binding of cell receptors to adhesion ligands, and many aspects of cell behavior are believed to be regulated by the number of these bonds that form. Unfortunately, a lack of methods to quantify bond formation, especially for cells in 3D cultures or tissues, has precluded direct probing of this assumption. We now demonstrate that a FRET...
متن کاملApplication of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast
Objective(s):Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface. Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Contro...
متن کاملMechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts
MicroRNAs (miRNAs/miRs) and nuclear factor (NF)-κB activation are involved in mechanical stretch-induced skeletal muscle regeneration. However, there are a small number of miRNAs that have been reported to be associated with NF‑κB activation during mechanical stretch-induced myogenesis. In the present study, C2C12 myoblasts underwent cyclic mechanical stretch in vitro, to explore the relationsh...
متن کاملBalance between S-nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation.
Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 139 شماره
صفحات -
تاریخ انتشار 2008